Monday, July 29, 2013

Mg Soleil Project-3

I.         Introduction
1.1      Solar energy and Magnesium
1.2      Magnesium Smelting

1.1      Solar Energy and Magnesium
There are six types of primary energies available on the earth. Comparative calculation of those energies shows that solar energy is 64% or more of the total amount of those primary energies. The solar energy is limitless in amount and eternally available on the earth.    Magnesium is ranked in the 8th place in Clarke number, and is abundant in the Earth's crust and seawater. The fact leads to cheap resultant products.

Another famous professor having an approach to the technology development, which is similar to that of Prof. Kohama is present.   He is Prof. Donald R. Sadoway of MIT (Massachusetts Institute of Technology), who is widely recognized as a leading battery and energy storage expert.

He engages in developing grid-scale liquid metal battery (Mg and Sb electrodes, and a molten salt electrolyte) in cooperation with his group (Ambri Inc.). His basic approach to the battery development is to use materials that are abundant and readily available at neat locations. The approach leads to cost reduction of the resultant products, as a matter of course.

1.2 Magnesium Smelting
Magnesium compounds occurring naturally, which are gathered, are smelted by using solar energy. The resultant magnesium is utilized for its intents and purposes.

A solar furnace is used for the smelting process. The well-known Pidgeon process is employed for the smelting. The Pidgeon has long been in practical use, and there is no need of developing any additional technology in executing the process. Japan also smelted magnesium by using the Pidgeon process 20 years ago. A main reason why the Pidgeon process was employed is for easy development in executing the Mg Soleil project.

The Pidgeon process uses high temperature of 1,200 degrees C and catalyst for smelting. The high temperature is created by burning coal (inevitably emitting a large amount of CO2).

The Mg Soleil project uses a solar furnace to create the 1,200 degrees C temperature. Tohoku University of Prof. Kohama has long has long and successfully utilized the solar furnace for material research. The solar furnace produced high temperature near to 4,000 degrees C. There is no problem to produce 1,200 degrees C.

Prof. Kohama manufactured a prototype of the solar furnace in his lab.  The prototype successfully operated as intended.  He continues his research and development of the solar furnace while making the scale-up of the solar furnace. Note that the magnesium smelting process is performed substantially based on the solar energy. This indicates that the Kohama’s smelting solar furnace imposes little load to the environment.

1.1. 太陽光エネルギーとマグネシウム
地球上で利用可能な 1 次エネルギー6種類、その中の 64%以上が太陽光エネルギー。 無限で、絶えることがない。マグネシウムのクラーク数は8番目であり、地表および海水に広く、多量に存在する。これはできた製品の廉価につながる。

類似の考えを持つ人がいる。MIT の Donald R. Sadoway だ。氏は grid-scale liquid metal battery (Mg and Sb electrodes, and a molten salt electrolyte ) を開発している (Ambri Inc.)。氏の開発理念は電池に使用する材料 は豊富で、身近で入手し得る材料を使う、である。これは結果物である製品の廉価につながる。

1.2 マグネシウム精錬
天然に存在するマグネシウム、そして使用済みマグネシウムを精錬し、得たマグネシウ ムを利用する。
マグネシウムの精錬は太陽炉を用いて行う。精錬 process としては周知のピジョン process を用いる。 この技術は実用化されている技術であり、今それを実施するにあたり新たに開発する 技術は何もない。 日本でも20年前にこの方法でマグネシウムの精錬を行っていた。Mg Soleil Projectの開発と進行の迅速を目的 にこの方法を採用した。
ピジョン process では 1,200 の温度と触媒を使う。この高温は石炭を燃焼させて得る。大量の CO2 の発生を伴う。
Mg Soleil プロジェクトでは 1,200 の温度を太陽炉で得る。太陽炉の利用に長い実績がある。4,000 近い温度を得ている。1,200 の温度は全く問題がない。lab でマグネシウム精錬太陽炉の prototype を作製し、その作動に成功している。規模を上げ、実験を継続している。このように精錬は実質太陽エネルギーを用いて行う。環境への負荷はほぼゼロ。




No comments:

Post a Comment

Note: Only a member of this blog may post a comment.